

    
      
          
            
  
SciCell++

SciCell++ is an object-oriented framework for the simulation of
biological and physical phenomena modelled as continuous or discrete
processes.


A framework, not a library

SciCell++ is a software framework, that means, we provide you with
the main code structure and you only have to fill-in the specific
details for your project. In a library, you are in charge of the main
flow of the program and the tools that you include.

The code that you write becomes part of the framework, this will help
others to build on your code just as you built on the code wrote by
them. We encourage you to personalise SciCell++ based on your needs
by extending its current behavior to provide it with extra
functionalities.



	Initial steps
	Installation

	Starting SciCell++

	Configuration





	Workflows
	Beginner workflows

	Intermediate workflows

	Advanced workflows

	Expert workflows





	Demos
	Examples and test cases

	Current demos for specific functionalities





	Tutorials
	General

	Maths

	Cellular Automata





	Contributions
	How to contribute?

	Facts and curiosities





	License

	Help








Indices and tables


	Index


	Module Index


	Search Page







            

          

      

      

    

  

    
      
          
            
  
Initial steps

This document shows you how to install, start and configure SciCell++ on Linux and
Windows systems.


	The default installation strategy is based on containers so that
all software dependencies are preinstalled and ready to use by
SciCell++. The installation section will show you how
to install the container software for your operating system.


	Then continue with the starting SciCell++ section that shows
you how to start SciCell++ using a container.


	Once running the container with SciCell++ the configuration section will show you how
to compile and enable advanced SciCell++’s features.





Installation

The default installations use a container strategy such that all
software dependencies are preinstalled and ready to use for SciCell++.


	Linux installation For Linux systems
	users. Use this if you are not an experience Linux user. If you
feel like challenging yourself then try our non-container based
installation instructions and set aside enough sparse time.

Advanced installation: Use this
installation only if you are familiar with Unix based
systems. This installation provides you with full control over
the versions of the third-part packages used by SciCell++.



	Windows installation For Windows
	systems users. Use this instructions only if you are not able to
install a Linux distribution in your local machine.







Starting SciCell++

Start the container that provides you with all packages required by
SciCell++ and let it ready for the configuration step.


	Starting SciCell++ on Linux Use this
	option to run SciCell++ by either using the container based
installation or the advanced installation.



	Starting SciCell++ on Windows Use this
	option to run SciCell++ using the container based installation.







Configuration

This section guides you through the configuration process of
SciCell++.



Important

At this point you should have successfully installed and executued
SciCell++ on either Linux or Windows. Also you have started the
docker container.






The configuration is performed with help of the autogen.sh script
which lives in the main SciCell++ folder.


	In the running terminal make sure you are in the scicellxx
folder.


	Execute the automatic generator script by typing:

./autogen.sh





This command executes a full compilation of SciCell++ and runs all
the demos and tests to make sure you are working with an stable
copy. If you want a full list of available parameters for this
script then add the -h parameter and review the
additional options for autogen.sh section.

A summary of the compilation and testing processes is shown once
they have finished. If no errors were reported then SciCell++ is
ready to go.


Note

If you require to enable advanced features then check the
configuration files at the ./configs folder and have a look
at the options for these files to
enabled/disable advanced features.




Note

If you are NOT running SciCell++ within a container then use the
appropiate config files in the ./configs/advanced/ folder.



If this is the first time you compiled SciCell++ then you need to
create your own private folder, check the Workflows section
on how to do this and many other common uses for SciCell++. Also
check the Tutorials and Demos documents.






Additional options for autogen.sh

Activate the interactive mode for full configuration by passing the
-i parameter.


./autogen.sh -i








We encourage you to check the full list of options by passing the
-h parameter, the following may not reflect the full list of
options for the script.

This script builds [and runs the test suite of] SciCell++



	OPTIONS:
	
	-h

	Show this message



	-t

	Indicates to generate a ‘STATIC’ or ‘SHARED’ version of library files



	-b

	Build version ‘DEBUG’ or ‘RELEASE’



	-c

	Configuration file for additional building tools



	-n

	Number of processors to build the framework



	-d

	Number of processors to run demos (set to ‘0’ to skip demos testing)



	-i

	Interative mode, launches the interactive mode to prompt for FULL configuration options (any other parameters are ignored)



	-r

	Generate code coverage report



	-v

	Verbose














Options for the configuration file


	SCICELLXX_LIB_TYPE

Specify the building type of the library STATIC or SHARED.

Example:

SCICELLXX_LIB_TYPE=STATIC







	SCICELLXX_RANGE_CHECK

Specify whether to check for out-of-range in vectors or not. This
significantly increase the running time of your application. We
recommend you to enable this option only for developing purposes to
ease you finding errors in the code. When using this option consider
to compile with debugging options when prompted by the
autogen.sh file. Once you move into the release mode disable
this option and compile with full optimisation when prompted by the
autogen.sh file.

Example:

SCICELLXX_RANGE_CHECK=TRUE







	SCICELLXX_USES_DOUBLE_PRECISION

Specify whether to use single (float) or double (double)
precision at running time.

Example:

SCICELLXX_USES_DOUBLE_PRECISION=TRUE







	SCICELLXX_USES_ARMADILLO

Specify whether to use the external library Armadillo for linear
algebra. You would need to install Armadillo to enable this
option.

Example:

SCICELLXX_USES_ARMADILLO=FALSE







	SCICELLXX_AUTO_FIND_ARMADILLO_PATHS

Use this option to automatically find the corresponding installation
folder of Armadillo. Enable this option only if the option
SCICELLXX_USES_ARMADILLO was set to TRUE.

Example:

SCICELLXX_AUTO_FIND_ARMADILLO_PATHS=TRUE







	ARMADILLO_AUTO_FIND_FOLDER

If you want ot use Armadillo and you set the variable
SCICELLXX_AUTO_FIND_ARMADILLO_PATHS to TRUE you may indicate
an starting folder for the automatic finding of the Armadillo
installation.

Example:

ARMADILLO_AUTO_FIND_FOLDER=/home/tachidok/local/working/research/armadillo-8.300.3







	ARMADILLO_INCLUDE_DIRS

If you want to use Armadillo but set the variable
SCICELLXX_AUTO_FIND_ARMADILLO_PATHS to FALSE you must
indicate the include directory in this option.

Example:

ARMADILLO_INCLUDE_DIRS=/home/tachidok/local/working/research/armadillo-8.300.3/installation/include







	ARMADILLO_LIBRARIES

If you want to use Armadillo but set the variable
SCICELLXX_AUTO_FIND_ARMADILLO_PATHS to FALSE you must
indicate the lib directory in this option.

Example:

ARMADILLO_LIBRARIES=/home/tachidok/local/working/research/armadillo-8.300.3/installation/lib/libarmadillo.so.8.300.3







	SCICELLXX_USES_VTK

Specify whether to use the external library VTK for results
visualization. Some demos require VTK to generate output. You would
need to install VTK
to enable this option.

Example:

SCICELLXX_USES_VTK=FALSE







	SCICELLXX_AUTO_FIND_VTK_PATHS

Use this option to automatically find the corresponding installation
folder of VTK. Enable this option only if the option
SCICELLXX_USES_VTK was set to TRUE.

Example:

SCICELLXX_AUTO_FIND_VTK_PATHS=TRUE







	VTK_AUTO_FIND_FOLDER

If you want ot use VTK and you set the variable
SCICELLXX_AUTO_FIND_VTK_PATHS to TRUE you may indicate an
starting folder for the automatic finding of the VTK installation.

Example:

VTK_AUTO_FIND_FOLDER=/home/tachidok/local/working/research/VTK-8.1.1/VTK-bin







	VTK_INCLUDE_DIRS

If you want to use VTK but set the variable
SCICELLXX_AUTO_FIND_VTK_PATHS to FALSE you must indicate the
include directory in this option.

Example:

VTK_INCLUDE_DIRS=/home/tachidok/local/working/research/VTK-8.1.1/VTK-bin/installation/include/vtk-8.1







	VTK_LIBRARIES

If you want to use VTK but set the variable
SCICELLXX_AUTO_FIND_VTK_PATHS to FALSE you must indicate the
lib directory in this option.

Example:

VTK_LIBRARIES=/home/tachidok/local/working/research/VTK-8.1.1/VTK-bin/installation/lib/libvtkalglib-8.1.so.1







	SCICELLXX_PANIC_MODE

This option enables a large number of validations at running time,
it also enables error messages that may help you to identify
problems in your code. However, this considerably increase the
running time of your application. Use this option only at developing
time. Deactivate this function when runnig on release mode, also
make sure to activate full optimisation at compilation time when
prompted by the autogen.sh script.

Example:

SCICELLXX_PANIC_MODE=TRUE














            

          

      

      

    

  

    
      
          
            
  
Workflows

The most common uses for SciCell++ are described in this section,
these workflows show you how to create your private folder, run demos,
create your own project and include it as part of the demos of
SciCell++.

The main differences on the workflow for Windows and Linux users are
on the graphic interfaces. We provide you with the details for the
graphic interfaces when required.



Important

All these workflows suppose you have executed SciCell++ on a
container and the terminal prompt is at the main folder of
SciCell++.







Beginner workflows


	Create your private folder
	Every new user requires to create it own private folder to store
all of his/her work (new features, demos, tests).



	Compiling and running demos
	The easiest way to start working with SciCell++ is to run any of
its demos and change the values of the parameters to review its
effects on the outputs.



	Creating your own project
	For Windows systems users.



	Daily workflow
	For Linux systems users.







Intermediate workflows


	Add your project to the demos folder
	For Windows systems users.



	Generate a .tar.gz file to distribute SciCell++
	Generate a tar file to distribute or move SciCell++ into a
supercomputing cluster.



	Generate doxygen documentation for SciCell++
	Generate full documentation from source code with class diagrams.







Advanced workflows



Expert workflows





            

          

      

      

    

  

    
      
          
            
  
Demos


Examples and test cases

Demos, examples or test cases are in the demos folder. These demos
are also used to self test the implementation. You should run all of
them to make sure nothing is broken. You can select to perform a full
test at installation time, otherwise type

`shell
./ctest
`
into the specified build folder (the default one is build).

A large number of examples is expected to live in the demos folder
so check there for any feature available in the project.



Current demos for specific functionalities


	Interpolation


	Linear solvers


	Matrices operations


	Newton’s method


	Solution of ODE’s
* Lotka-Volterra solved with different time steppers
* N-body problem (only 3-body and 4-body cases)
* Explicit time steppers
* Implicit time steppers (full implicit and E(PC)^k E implementations)
* Adaptive time steppers




Here is some example text:

make 'this'
>> output









            

          

      

      

    

  

    
      
          
            
  
Tutorials

In this section you will find a large set of tutorials (some of them
with exercises) to help your way through SciCell++.


General



	1. Create a tutorial

	2. A quick starting-up guide







Maths



	1. Differential Equations







Cellular Automata

Cellular Motors

TASEP





            

          

      

      

    

  

    
      
          
            
  
1. Create a tutorial


1.1. How to create documentation



1.2. Python



1.3. Sphinx



1.4. Web tutorials





            

          

      

      

    

  

    
      
          
            
  
2. A quick starting-up guide

In this section we provide you with the basic tool to start working
with SciCell++, we present the main folder structure and how to create
your very first project. There is also a section for including your
project as a demo for further reference of new collaborators.


2.1. Running demos

SciCell++ is released with a set of demos that show you some of its
main features. We recommend you to explore the demos section of the
documentation and the demos folder. Whenever you want to run a demo
just go to the demo folder which you are interested, create a folder
called RESLT if it is not already there and type ./bin/
followed by the name of the demo.


	Example: Lets say you want to run the Lotka-Volterra demo in the
folder /demos/lotka_volterra/, once you are in that folder
create the RESLT folder where the output is stored (all the
demos are configured to store its output in a folder with that name,
if the folder does not exist then the output is not generated) and
run the demo:

mkdir RESLT
./bin/demo_lotka_volterra





Once the demo has started you should see output messages on the
terminal with general information about the results of the
computations. You can check the produced results in the RESLT
folder.






Note

Observe that some demos are equipped with Python or GNUPlot
script to visualise the results. Try to run them as python
<name-of-the-python-script.py> or gnuplot
<name-of-the-gnu-script.gp>.




2.1.1. Input arguments

Some demos require input arguments to run, if you try to run one of
those and pass nothing you will get a message indicating what you need
to pass. You can also check what input arguments a demo needs by
passing the --help or -h options at running time.




2.2. Create your private folder

Every user has its own private folder, use this folder to store all of
your work, in-development demos and any of your new developed features
for SciCell++. One of the first things that you should do in order to
start developing new features for SciCell++ is to create your private
folder, to do so follow theses instructions:


	Open a terminal and go to the private folder of SciCell++ and
typet the following (make sure to substitute john_cool by
your name):

cd private
mkdir john_cool
cd john_cool







	Update the CMakeLists.txt file in the private folder by adding
your folder name at the end of the file as follow (make sure to
substitute john_cool by your name):

ADD_SUBDIRECTORY(john_cool)







	Run the autogen.sh script at the root folder of SciCell++ and
make sure no problems are found. If there are any problem
double-check that you added your folder inside the private
folder of SciCell++ and that you are modifying the correct
CMakeLists.txt file.






2.3. Creating your own project

The easiest way to start a new project is to use a demo as a
template. For this example we are going to copy the demo driver
demo_basic_interpolation.cpp from the folder
demos/interpolation/basic_interpolation.


	Open a terminal and go to your private folder.


	Type the following to copy the demo driver into your private folder:

cp ../../demos/interpolation/basic_interpolation/demo_basic_interpolation.cpp demo_john.cpp









3. Copy the CMakeLists.txt.private_template file from the
tools folder into your private directory and change its name to
CMakeLists.txt


cp ../../tools/CMakeLists.txt.private_template CMakeLists.txt









	Change the content of the CMakeLists.txt file as follow:






	Change all the instances of the tag SRC_demo_john for your own
tag to identify your source code. For example: SRC_project_sophy.


	Change all the instances of demo_john.cpp for the name of your
source code file. For example: project_sophy.cpp.


	Change all the instances of demo_john, this will be the name
of your executable and the name you need to type at the terminal
to compile your project. For example:project_sophy.


	Change all the instances of the tag LIB_demo_john for your own
tag to identify libraries required for your code. For example:
LIB_project_sophy.


	Include the modules you need. In the template we only include the
general_lib and the problem_lib modules. Check the
Modules in SciCell++ document for the full list of module and their
details.








	Go to the root folder of SciCell++ and execute the ./autogen.sh
script. If you find errors please make sure you correctly changed
all the tags indicated in the previous step. Once building has
finished without errors you can build your own project.





2.3.1. Building and executing your project

Open a terminal and follow these instructions:


	Go to the build folder in the root SciCell++ folder and type

make demo_sophy





The building output should be displayed at your screen. Once no
errors have been reported you may run your code.



	Go to your private folder, create a RESLT folder if you
have no one, and type:

./bin/demo_sophy







	You should see the output of your project at the terminal.





Important

As you noticed, the generation and execution of your
project is performed in two different folders:


	the build folder (building)


	your private folder (execution)




We use this two-folders strategy to avoid cluttering
the folder structure of SciCell++ with files
automatically generated by CMake. By following this
strategy we keep a clean folder structure for SciCell++
and group all files generated by CMake in the build
folder. This help us to keep track for changes easily
since we can exclude the whole build folder from
the git repository.

Just keep in mind the following:


	Whenever you want to build your project you need to do so in the build folder, inthere just type make followed by the name of your project.


	Whenever you want to execute your project go to your private folder and type ./bin/the-name-of-your-project.









2.4. Add your project to the demos folder

If you add a new feature to SciCell++ we encourage you to
Create a tutorial and a demo showing these new features. Here
we detail the process to include your project as part of the demos of
SciCell++. We divide this process in two parts, the first one guides
you to create your folder and your validation files, the second part
shows you how to configure the SciCell++ to build and execute your
demo. In both sections we suppose that your demo is called
demo_sophy.


2.4.1. Create your demo and validation folder for your demo

The initial steps to include your demo as part of SciCell++ involve
create a folder in the SciCell++ demos folder structure and to
generate the validation files.


	Execute your project and save its output into a file. We encorage
you to execute it using single and double precision so that we have
two different outputs. The files that you generate should be named:


	validate_demo_sophy.dat for the single precision generated
output.


	validate_double_demo_sophy.dat for the double precision
generated output.






	Create a new folder into the demos folder structure. Use a name
that captures the intent of your project.

mkdir <your-folder-name>







	Add the following line at the end of the CMakeLists.txt file
that lives at the same level of the folder that you created:

ADD_SUBDIRECTORY(your-folder-name)







	Step into your demo folder and create a folder called
validate.


	Copy the two output files (or copy all of them if you have more
than two) generated at step 1 into the validate folder.






2.4.2. Configure SciCell++ to build and execute your demo

Once you have created your folder and copied the validation files
there you are ready to configure SciCell++ to build and execute your
demo.


	Copy the source code for your project into your demo folder, in
this case we suppose that the source code for your project is
the file demo_sophy.cpp.


	Copy the CMakeLists.txt.demo_template from the /tools/
folder into your demo folder. Rename this file as
CMakeLists.txt.


	Change the content of the CMakeLists.txt file as follow:


	Change all the instances of the tag SRC_demo_john for your
own tag to identify your source code. For example:
SRC_demo_sophy.


	Change all the instances of demo_john.cpp for the name of
your source code file. For example: demo_sophy.cpp.


	Change all the instances of demo_john, this will be the name
of your executable and the name you need to type at the terminal
to compile your project. For example:demo_sophy.


	Change all the instances of the tag LIB_demo_john for your
own tag to identify libraries required for your code. For
example: LIB_demo_sophy.


	Include the modules you need. In the template we only include the
general_lib and the problem_lib modules. Check the
Modules in SciCell++ document for the full list of module and their
details.






	In the same file perform the following changes in the Test
section.


	Change all the instances of TEST_demo_john_run by the name of
your demo. For example: TEST_demo_sophy_run.


Important

Make sure to keep the TEST and _run prefix
and postfix, respectively.





	Change all the instances of demo_john with the name of your
demo. For example: demo_sophy.


	Change all the instances of VALIDATE_FILENAME_demo_john with
the name of your tag for the validation file. For example:
VALIDATE_FILENAME_demo_sophy.


	Change the name of the validation file
validate_double_demo_john.dat by yours. Recall that this file
should store the output of your project executed using double
precision. For example: validate_double_demo_sophy.dat.


	Change the name of the validation file validate_demo_john.dat
by yours. Recall that this file should store the output of your
project executed using single double precision. For example:
validate_demo_sophy.dat.


	Change all instances of TEST_demo_john_check_output with the
name of your demo. For example: TEST_demo_sophy_check_output.





Important

Make sure to keep the TEST and _output
prefix and postfix, respectively.





	Make sure that the computations of your demo are stored in an
output file. If the file that you generate is called differently
than output_test.dat then modify any instance of that name in
the CMakeLists.txt file.


	Go to the root folder of SciCell++ and execute the ./autogen.sh
script and enable the execution of the demos. If you find errors
please make sure you correctly changed all the tags indicated in
the previous steps. Your project should be automatically built,
executed and validated.









            

          

      

      

    

  

    
      
          
            
  
1. Differential Equations


1.1. What are differential equations?


	Move the solution of a differential equation ot other section
* You may start by stating that a solution is a function and not a


value






	In the section of why DE are important check the YouTube video
https://youtu.be/p_di4Zn4wz4




A differential equation is any expression where a function \(y\)
is related to its derivative [Strang2014], for example:


(1)\[\begin{equation}
  \frac{d}{dt}y(t) = y(t)
\end{equation}\]

This equation states that the change in the function \(y\) with
respect to a change in the variable \(t\) is equal to the function
itself evaluated at time \(t\). A solution for such equation
should be a function such that its derivative is the same function
\(y\).

A different way to think about a solution for that equation may be


“what function has the property that its derivative is the very same
function?”, or “what function satisfy the relation given by
(1)?”




A function with such properties is the exponential function
\(e^t\), therefore the solution for
(1) is:


\[\begin{equation}
  y(t) = e^t
\end{equation}\]

If you do the maths, you will notice that the derivative of
\(e^t\), that is \(\frac{d}{dt} e^t= e^t\); and you are done.

Some more examples of differential equations are the following:


(2)\[\begin{split}\begin{align}
  \frac{d}{dt}y(t) &= 2ty(t)\\
  \frac{d}{dt}y(t) &= y(t)^2\\
  \frac{d}{dt}y(t) &= 3y(t)^2 \sin (t+y(t))\\
  \frac{d^2}{dt^2}y(t) &= \sin t + 3y(t) + \left( \frac{d}{dt}y(t) \right)^2\\
  \frac{d^3}{dt^3}y(t) &= e^{-y(t)} + t + \frac{d^2}{dt^2}y(t)
\end{align}\end{split}\]

Observe that differential equations may represent complex relations
between a function and its derivatives. Have a second look at the
previous equations, you will notice that there are relations regarding
the second and the third derivate of a function, expressed as
\(\frac{d^2}{dt^2}\) and \(\frac{d^3}{dt^3}\),
respectively. You may find differential equations relating a function
with its \(n\) derivate; which is expressed as
\(\frac{d^n}{dt^n}\).



1.2. Why are differential equations important?

Differential equations are very useful to study a wide variety of
phenomena found in nature. Differential equations connect maths with
physics, biology and chemestry.

Differential equations describe changes

Differential equations are commonly used when it is easier to
describe changes on a phenomena rather than state why a phenome is at
a particular state.


Important

It is a common practice to write the dependent function without its
parameters, for example, \(y\) is commonly used instead of
\(y(t)\). Therefore the notation is simplified as
\(\frac{dy}{dt}\) instead of \(\frac{d}{dt}y(t)\). You
should be careful that a similar notation may be used for dependant
function with multiple parameters, for example, \(u(t, x)\) may
be wrote as \(u\). By now we will only deal with functions with
one parameter.





1.3. Types of differential equations

Differential equations can be classified according to its degree, its
number of variables, …

Ordinary Differential Equations vs Partial Differential Equations



1.4. How to interpret a differential equation



1.5. References


	Strang2014

	Strang, G. (2014). Differential Equations and Linear
Algebra. Wellesley, MA: Wellesley-Cambridge Press.









            

          

      

      

    

  

    
      
          
            
  
Contributions

Information that may help you to start your contributions to
SciCell++, please feel free to contact the developer’s team at any
time.


How to contribute?

Create new issues in the GitHub repository [https://github.com/tachidok/scicellxx] or send an email directly to
the developer’s team (jcp.sansalvador@inaoep.mx)



Facts and curiosities

How many developers are currently working on the library?

At Monday, September/20, 2021 there is one and only one developer.

When did this project start?

The first commit to GitHub of this project was on Friday, 11 March 2016.

A list (in wikipedia) of some software packages implement the FEM

https://en.wikipedia.org/wiki/List_of_finite_element_software_packages


List of contributors


	tachidok


	GitHub repository (https://github.com/tachidok)


	Official webpage (https://ccc.inaoep.mx/~jcp.sansalvador/)













            

          

      

      

    

  

    
      
          
            
  
License




	GNU GENERAL PUBLIC LICENSE
	Version 3, 29 June 2007








Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.



Preamble




The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are
designed to take away your freedom to share and change the works. By
contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program–to make
sure it remains free software for all its users.  We, the Free
Software Foundation, use the GNU General Public License for most of
our software; it applies also to any other work released this way by
its authors.  You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and
charge for them if you wish), that you receive source code or can
get it if you want it, that you can change the software or use
pieces of it in new free programs, and that you know you can do
these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights.  Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the
freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received.  You must make sure that they, too,
receive or can get the source code.  And you must show them these
terms so they know their rights.

Developers that use the GNU GPL protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this
License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly
explains that there is no warranty for this free software.  For both
users’ and authors’ sake, the GPL requires that modified versions be
marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so.  This is fundamentally incompatible with the
aim of protecting users’ freedom to change the software.  The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most
unacceptable.  Therefore, we have designed this version of the GPL
to prohibit the practice for those products.  If such problems arise
substantially in other domains, we stand ready to extend this
provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software
patents. States should not allow patents to restrict development and
use of software on general-purpose computers, but in those that do,
we wish to avoid the special danger that patents applied to a free
program could make it effectively proprietary.  To prevent this, the
GPL assures that patents cannot be used to render the program
non-free.

The precise terms and conditions for copying, distribution and
modification follow.


TERMS AND CONDITIONS





	Definitions.




“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
License.  Each licensee is addressed as “you”.  “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the
work in a fashion requiring copyright permission, other than the
making of an exact copy.  The resulting work is called a “modified
version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on
a computer or modifying a private copy.  Propagation includes
copying, distribution (with or without modification), making
available to the public, and in some countries other activities as
well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies.  Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.

An interactive user interface displays “Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License.  If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.


	Source Code.




The “source code” for a work means the preferred form of the work
for making modifications to it.  “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form.  A
“Major Component”, in this context, means a major essential
component (kernel, window system, and so on) of the specific
operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts
to control those activities.  However, it does not include the
work’s System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing
those activities but which are not part of the work.  For example,
Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is
specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other
parts of the work.

The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that same
work.


	Basic Permissions.




All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met.  This License explicitly affirms your unlimited
permission to run the unmodified Program.  The output from running a
covered work is covered by this License only if the output, given
its content, constitutes a covered work.  This License acknowledges
your rights of fair use or other equivalent, as provided by
copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force.  You may convey covered works to others for the sole
purpose of having them make modifications exclusively for you, or
provide you with facilities for running those works, provided that
you comply with the terms of this License in conveying all material
for which you do not control copyright.  Those thus making or
running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside
their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below.  Sublicensing is not allowed; section
10 makes it unnecessary.


	Protecting Users’ Legal Rights From Anti-Circumvention Law.




No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under
article 11 of the WIPO copyright treaty adopted on 20 December 1996,
or similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License
with respect to the covered work, and you disclaim any intention to
limit operation or modification of the work as a means of enforcing,
against the work’s users, your or third parties’ legal rights to
forbid circumvention of technological measures.


	Conveying Verbatim Copies.




You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the
code; keep intact all notices of the absence of any warranty; and
give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.


	Conveying Modified Source Versions.




You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:



	The work must carry prominent notices stating that you modified
it, and giving a relevant date.


	The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7.  This requirement modifies the requirement in
section 4 to “keep intact all notices”.


	You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy.  This
License will therefore apply, along with any applicable section
7 additional terms, to the whole of the work, and all its
parts, regardless of how they are packaged.  This License gives
no permission to license the work in any other way, but it does
not invalidate such permission if you have separately received
it.


	If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has
interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.







A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit.  Inclusion of a covered
work in an aggregate does not cause this License to apply to the
other parts of the aggregate.


	Conveying Non-Source Forms.




You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of
these ways:



	Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.


	Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code
either (1) a copy of the Corresponding Source for all the
software in the product that is covered by this License, on a
durable physical medium customarily used for software
interchange, for a price no more than your reasonable cost of
physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no
charge.


	Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source.  This
alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in
accord with subsection 6b.


	Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to
the Corresponding Source in the same way through the same place
at no further charge.  You need not require recipients to copy
the Corresponding Source along with the object code.  If the
place to copy the object code is a network server, the
Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the
object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you
remain obligated to ensure that it is available for as long as
needed to satisfy these requirements.


	Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.







A separable portion of the object code, whose source code is
excluded from the Corresponding Source as a System Library, need not
be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling.  In determining whether a product is
a consumer product, doubtful cases shall be resolved in favor of
coverage.  For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the
way in which the particular user actually uses, or expects or is
expected to use, the product.  A product is a consumer product
regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the only
significant mode of use of the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source.  The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of
the User Product is transferred to the recipient in perpetuity or
for a fixed term (regardless of how the transaction is
characterized), the Corresponding Source conveyed under this section
must be accompanied by the Installation Information.  But this
requirement does not apply if neither you nor any third party
retains the ability to install modified object code on the User
Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include
a requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed.  Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information
provided, in accord with this section must be in a format that is
publicly documented (and with an implementation available to the
public in source code form), and must require no special password or
key for unpacking, reading or copying.


	Additional Terms.




“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its
conditions. Additional permissions that are applicable to the entire
Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law.  If
additional permissions apply only to part of the Program, that part
may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the
additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it.  (Additional permissions may be written to require their own
removal in certain cases when you modify the work.)  You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material
you add to a covered work, you may (if authorized by the copyright
holders of that material) supplement the terms of this License with
terms:



	Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or


	Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate
Legal Notices displayed by works containing it; or


	Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be marked
in reasonable ways as different from the original version; or


	Limiting the use for publicity purposes of names of licensors
or authors of the material; or


	Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or


	Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified
versions of it) with contractual assumptions of liability to
the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.







All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10.  If the Program as
you received it, or any part of it, contains a notice stating that
it is governed by this License along with a term that is a further
restriction, you may remove that term.  If a license document
contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed
by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.


	Termination.




You may not propagate or modify a covered work except as expressly
provided under this License.  Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights
under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you
under this License.  If your rights have been terminated and not
permanently reinstated, you do not qualify to receive new licenses
for the same material under section 10.


	Acceptance Not Required for Having Copies.




You are not required to accept this License in order to receive or
run a copy of the Program.  Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance.  However,
nothing other than this License grants you permission to propagate
or modify any covered work.  These actions infringe copyright if you
do not accept this License.  Therefore, by modifying or propagating
a covered work, you indicate your acceptance of this License to do
so.


	Automatic Licensing of Downstream Recipients.




Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License.  You are not
responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations.  If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or
could give under the previous paragraph, plus a right to possession
of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable
efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License.  For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit)
alleging that any patent claim is infringed by making, using,
selling, offering for sale, or importing the Program or any portion
of it.


	Patents.




A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based.  The
work thus licensed is called the contributor’s “contributor
version”.

A contributor’s “essential patent claims” are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its
contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the
contributor version.  For purposes of this definition, “control”
includes the right to grant patent sublicenses in a manner
consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify
and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or
covenant not to sue for patent infringement).  To “grant” such a
patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible
means, then you must either (1) cause the Corresponding Source to be
so available, or (2) arrange to deprive yourself of the benefit of
the patent license for this particular work, or (3) arrange, in a
manner consistent with the requirements of this License, to extend
the patent license to downstream recipients.  “Knowingly relying”
means you have actual knowledge that, but for the patent license,
your conveying the covered work in a country, or your recipient’s
use of the covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to believe
are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the
patent license you grant is automatically extended to all recipients
of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License.  You may not convey a
covered work if you are a party to an arrangement with a third party
that is in the business of distributing software, under which you
make payment to the third party based on the extent of your activity
of conveying the work, and under which the third party grants, to
any of the parties who would receive the covered work from you, a
discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies),
or (b) primarily for and in connection with specific products or
compilations that contain the covered work, unless you entered into
that arrangement, or that patent license was granted, prior to 28
March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.


	No Surrender of Others’ Freedom.




If conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License.  If you
cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations,
then as a consequence you may not convey it at all.  For example, if
you agree to terms that obligate you to collect a royalty for
further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.


	Use with the GNU Affero General Public License.




Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a
single combined work, and to convey the resulting work.  The terms
of this License will continue to apply to the part which is the
covered work, but the special requirements of the GNU Affero General
Public License, section 13, concerning interaction through a network
will apply to the combination as such.


	Revised Versions of this License.




The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time.  Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number.  If the
Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation.  If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or different
permissions.  However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.


	Disclaimer of Warranty.




THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.


	Limitation of Liability.




IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.


	Interpretation of Sections 15 and 16.




If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection
with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.



END OF TERMS AND CONDITIONS




How to Apply These Terms to Your New Programs




If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make
it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is
found.  <one line to give the program’s name and a brief idea of
what it does.> Copyright (C) <year> <name of author>


This program is free software: you can redistribute it and/or
modify     it under the terms of the GNU General Public License as
published by     the Free Software Foundation, either version 3 of
the License, or    (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see
<https://www.gnu.org/licenses/>.







Also add information on how to contact you by electronic and paper mail


If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:


<program>  Copyright (C) <year>  <name of author>     This program
comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.







The hypothetical commands `show w’ and `show c’ should show the
appropriate parts of the General Public License.  Of course, your
program’s commands might be different; for a GUI interface, you would
use an “about box”.


You should also get your employer (if you work as a programmer) or
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. For more information on this, and how to apply and follow
the GNU GPL, see <https://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your
program into proprietary programs.  If your program is a subroutine
library, you may consider it more useful to permit linking
proprietary applications with the library.  If this is what you want
to do, use the GNU Lesser General Public License instead of this
License.  But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.










            

          

      

      

    

  

    
      
          
            
  
Help

For help please contact the developers team at jcp.sansalvador@inaoep.mx




            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  Here we present a kind of coding/programming style policies to happily
coding together. First of all, as you may already noticed, we use
C++ as our programming language. Why? well, that is because of its
widely continuous spreading along the scientific community and all its
nicely offered features.

The list of rules that you will find here are taken from our own
experience. We took what has worked for us when working in cooperative
projects, and set aside those silly things that only made cooperation
painful and no longer fun. We encourage you to talk with us about new
and excitement cooperation ideas you know. Hope you agree with us in
what we present here. Sit back, relax and happy reading.


	Comments




/”Comments are supposed to make your code easier to understand and
maintain– not harder”/, [[http://blog.codinghorror.com/when-good-comments-go-bad][when comments go bad]].

There is nothing more frustrating than having to review someone’s else
code (and sometimes our own code) and find out that the variables or
functions names are not representative of what they are used for. The
code is a complete mess, it has no identation at all, and the worse
thing is that there is not a single commented line to give us a clue
of what is going on. In this case we have two options,
- spend our whole day (or even more) to understand the code (and find


out that the code is not doing what you are looking for), or





	throw it away and do your own implementation (I personally prefer
this option).




Certainly, the above prevents code reusing which is one of the main
purposes of this project.

First of all, +try to+ make your code as self-explanatory as
possible. Suppose that you are telling a story to a group of people
and you want everyone that is hearing you do not get lost while you
are talking. If the syntaxis of the programming language does not
allow you to write your story clearly then use comments, do not be
afraid of using them.

Put your comments as close as possible to the source code they are
referring. A developer may not notice a comment that referrs to a
code line that he/she is modifying, thus the comments and the code
will be out of sync, [[http://blog.codinghorror.com/when-good-comments-go-bad][when commnets go bad]], [[http://blog.codinghorror.com/code-tells-you-how-comments-tell-you-why][code tells you how,
comments tell you why]].

Use comments to clarify the selection of some algorithms or to
mention things to remember during the execution of the code.

When writing functions that perform a large number of sub-tasks, use
the initial part of it to write a (brief!) summary of the followed
strategy by the function and include a list with the main steps of
the function. This helps the reader of your code to get an idea of
what to expect in the body of the function.

One final thing, always keep in mind that what may be transparently
obvious for you, may be completely obscure and complex to another
developer (or for yourself after returning from a non-programming
period), use comments to ease the reading of your code, not to make
it harder.

If you are looking for some good reasons for not documenting your code
then check these ones [[http://everything2.com/index.pl?node_id=1709851&displaytype=printable][(why programmers do not comment their code)]] and
see what better matches with you.


	Indentation




This is simple, indent your code for easy reading. I
use emacs as my preferred editor and have it configured to
automatically indent with a single white-space when pressing
TAB. You can copy and use my emacs configuration file (init.el) from
the /tools/emacs/ folder, or configure your favorite editor to
indent with a single white-space.


	Variables




We use variables to store values or data that are used frequently in
the body of a function or as part of a class.

** Variables types
Use =unsigned= instead of =int= in loops (=for= or =while=) that do
not require negative indexes.

** Variables names
Use variable names that reflect the values or data stored in the
variable. If you require to store the velocity you may use =v= or
=velocity= as the variable name.

Avoid using the well known variables names:

#+CAPTION: Bad variables names
#+NAME: tab:bad_variables_names
| =var1=            | =var2=           | =var3=             |
| =value=           | =variable=       | =my_variable=      |
| =this_variable=   | =other_variable= | =another_variable= |
| =delete_variable= | =here=           | =there=            |
| a                 | b                | c                  |

I know you (use?) have used those variable names, everyone does it,
but this is the time to forget about them and use self explained
variables names.

Variables that stores the number of elements of something must use
the prefix =n_=. For example, if you want to store the number
of processors in a variable then that variable must be named as
follow:
#+BEGIN_SRC c++
const unsigned n_processors = nprocessors();
#+END_SRC

Note that the function name does not use the ‘=_=’, refer to the
functions names section for details.

** Const or non const?
Well, it happens that in C++, variables that do not pretend to change
their value along the entire exection of the program are declared with
a =const= before the variable type. Then why are they still called
variables?

Anyway, use =const= on variables that are not intented to change
their value. Remember that when using =const= you need to specify the
value of the variable at the time of its declaration.


	Functions




Functions are a great idea that let us split a complicated tasks in
small (or not that small) and easy to digest sub-tasks. We can
implement a complex task as a set of subtasks, each implementing a
basic idea that may be re-used in other complex tasks.

Think of a function as an independent task that may even call other
functions to perform its job.

** Functions types

** Functions names
When working in a small or individual project it is quite tempting to
use short name functions, first because no one else will use (or
review) our code, and second because of laziness. We pretend that this
library be (re-)used by a large community, thus function’s names that
reflect the intention or the work performed by the function is a good
way to promote re-usability.



	Functions names MUST all be in lowercase.





	Use ‘=_=’ to separate words in the function name.







** Split large funtions into sub-task

** Input and output arguments

A function may require some input data to work with, if that is the
case then you need to set it when calling the function. Avoid using
global variables at all to pass data to functions. Any function
should only know about the data that is receiving, if the function is
part of a class then the function should have access to the class
variables (including inherent data by the class).

*** Const or non-const
Use =const= as much as you can, if you do not need (or do not know if
you need) to change the value of any variable inside a function then
use =const= after function arguments, example


	#+BEGIN_SRC c++
	unsigned function_that_does_not_changes_values() const





#+END_SRC

otherwise do not use =const=
#+BEGIN_SRC c++


unsigned function_that_does_changes_values()




#+END_SRC

Use =const= before the function name if the value that the function
returns is not expected (or if you dont know that it is expected) to
be modified by the function caller, example


	#+BEGIN_SRC c++
	const unsigned function_whose_return_values_is_not_expected_to_change()





#+END_SRC

otherwise do not use =const=
#+BEGIN_SRC c++


unsigned function_whose_return_values_is_expected_to_change()




#+END_SRC

*** Pass by copy or pass by reference
Only pass arguments by copy when they are a single value, such as an
integer or a double value. Any other argument MUST be passed by
reference. This is to avoid copying large vectors, matrices or
objects and thus run out of memory because of the many copies of the
same object in memory. If we do not really need a copy of every single
element in a vector, matrix or object then why should we make a copy
ot it?

Examples of passing arguments by reference here soon

Use & when passing an argument by reference


	Classes




We use classes to represent entities that perform complex tasks, for
example, we use classes to implement linear algebra matrices. These
classes are in charge of providing storage, access and manipulation of
the matrices values. In order to identify abstract and concrete
classes we use the prefix =AC= for abstract classes and =CC= for
concrete classes. In general, abstract classes are used to define the
interfaces of the classes and the common data between
sub-classes. Concrete classes implement particular implementations of
the methods of the abstract class.

An abstract class for matrices is identified by the name =ACMatrix=,
and a concrete implementation of class representing matrices is
identified with the name =CCMatrix=.

** Member variables
** Member functions

DELETE DELETE



            

          

      

      

    

  

    
      
          
            
  % Abstract
begin{abstract}


A quick introduction to my favorite text editor texttt{emacs}. Is
it really only a text editor?




end{abstract}

% Enable the following when using a report document style

%tableofcontents
%listoffigures
%listoftables

section{Introduction}
This document is mainly (and by now completely) based on the tutorials
in youtube by Baris Yuksel (textit{b yuksel}),
cite{emacs_video_01:URL, emacs_video_02:URL}, and the
textit{Emacs-tutorial-for-Beginners} cite{emacs_github:URL}, also by
Baris Yuksel.

In the following sections we present a set of commands that will make
you start talking texttt{emacs} language. An texttt{emacs} command
looks something like texttt{C-x C-c}, in this example, the capital
texttt{C} indicates to press and hold the texttt{Control} key, the
lower case letters indicate to press the texttt{x} and the texttt{c}
keys on the keyboard. To introduce that command into texttt{emacs}
you need to press and hold the texttt{Control} key, then press the
texttt{x} key, then press and hold the texttt{Control} key and press
the texttt{c} key, oh my gosh!!. You can also execute the command by
pressing and holding the texttt{Control} key, then pressing the
texttt{x} key followed by pressing the texttt{c} key. Note that in
this case we pressed and hold the texttt{Control} key and did not
released until once all the keys have been pressed.

You will find other commands having a capital texttt{M}, this
indicates to press a textit{Meta} key, which in most of the cases is
the texttt{Alt} key. You can also use the texttt{Esc} key, but it
may be kind of unconfortable while typing. Google for the meta key
corresponding to your system (Mac users).

subsection{Is this your first time with texttt{emacs}?}
I am not going to lie you, at the beginning you will find difficult
and weird to use the texttt{emacs} commands, but once you get used to
them you will find that your typing speed has increased, and more
noticeable, you will no longer be using the mouse for typing your
documents. Well, in the first instance, why should we be using a mouse
for textit{typing}?

Thus, do not panic if you find that you cannot copy and paste text,
you first need to learn the texttt{emacs} language first so it
understand what you want.

Congratulations and welcome to the texttt{emacs} world.

section{Opening and quiting texttt{emacs}}
begin{itemize}
item texttt{emacs}: Opens texttt{emacs} from a terminal.
item texttt{emacs -nw}: Opens texttt{emacs} in a terminal. Use


this if you have no access to X11 tools in your system.





	item texttt{C-x C-c}: If the file has not been saved, it asks for
	saving it and then quits texttt{emacs}.





end{itemize}

section{Visiting and saving files}
In texttt{emacs}, opening or creating a new file is referred as
textit{visiting} the file.
begin{itemize}
item texttt{C-x C-f}: Opens a file, asks for the file name. If the


filename does not exist then it creates a new file with the given
name.




item texttt{C-x C-s}: Saves the file without a prompt.
item texttt{C-x s}: Saves all files with a prompt.
item texttt{C-s C-w}: Saves the file with a different name. Asks


you for the name.




end{itemize}

subsection{Recovering files}
Let say you create a file called texttt{my_file.txt}, then emacs
automatically creates a file called texttt{my_file.txt~} in the
same folder. This tilde(texttt{~}) file is the previous version of
the file. Also, texttt{emacs} has auto-save enabled by default, this
auto-save file is located in the same directory with the name
texttt{#my_file.txt}. If for any reason (light cut) you quit
texttt{emacs} without saving your file, you can recover it by opening
emacs and type texttt{M-x recover-file}.

section{Deleting text}
You can always use the texttt{BackSpace} and texttt{Delete} keys if
you want, but try thes ones and see if you still prefer those two old
fashioned keys.
begin{itemize}
item texttt{C-d}: Deletes the letter at the cursor, same as


texttt{Delete}.





	item texttt{M-d}: Deletes the word in front of the cursor, yes, the
	word. Think of this as a hungry texttt{Delete}.



	item texttt{C-k}: Deletes (and stores into the clipboard) the line
	in front of the cursor, yes, you read right, the complete
line. Think of this as a very hungry texttt{Delete}.





end{itemize}

section{Kill and Yank in texttt{emacs}, or Cut/Copy/Paste}
In texttt{emacs}, cutting a region or section of text is called
textit{Kill} text, possibly because the text disappears from the
screen and is temporarly stored in the clipboard. texttt{Emacs} use a
kind of textit{stack} for the clipboard, you get access to the
history of elements stored in the clipboard by using a special command
for pasting (texttt{M-y}).

begin{itemize}
item texttt{C-space}: Starts marking/highligting a region. You can


a large number of commands to the marked region, not just kill and
yank.





	item texttt{C-w}: (cut) Cuts this region into the clipboard
	(deletes the region and copies it to clipboard).



	item texttt{C-k}: (cut) Kills/deletes the whole line, puts it into
	the clipboard.



	item texttt{M-w}: (copy) Copies the selected region into the
	clipboard. Saving a region involves hitting C-space to start
selecting, and then hitting texttt{M-w} or texttt{C-w} to copy or
cut it into the clipboard, and then hitting texttt{C-y} to paste
it.



	item texttt{C-y}: (paste) Pastes whatever is in the clipboard at
	the cursor. Subsequent texttt{C-y}’s will keep on pasting.



	item texttt{M-y}: (paste) Pastes whatever is in the clipboard at
	the cursor. Subsequent texttt{M-y}’s will loop over the clipboard
history.



	item texttt{C-g}: Quits/cancels your command. If you dont like the
	region you are selecting, hit texttt{C-g}.





end{itemize}

section{Moving around or cursor commands}
You can move around a buffer with need of the mouse, learn this few
commands and say bye bye to your mouse.
begin{itemize}
item texttt{C-a}: Beginning of line.
item texttt{C-e}: End of line
item texttt{M->}: End of buffer
item texttt{M-<}: Beginning of buffer
end{itemize}

section{Thank gosh for undo and redo}
texttt{Emacas} allows you to undo and redo, these are the commands:
begin{itemize}
item texttt{C-/}: Undo
item texttt{C-g C-/}: Redo
end{itemize}

section{Frames, windows and buffers}
In texttt{emacs}, each opened file gets a textit{buffer}, there you
can edit the file and once you are done, save and close it. The buffer
used to visualise your file is then closed and released.

If you opened texttt{emacs} in a terminal, you may want to visualise
more that one file at once, you can use textit{windows} to split your
workspace and visualise more than one buffer at a time.

What you currently know as windows (not texttt{emacs} windows), in
texttt{emacs} languages are called textit{frames}. Thus you can also
create new frames to visualise you files, note that inside a frame you
can have windows, and in each window a buffer.

begin{itemize}
item texttt{C-x b}: Switches buffers, asks you which buffer to


switch to.





	item texttt{C-x C-b}: Switches buffers, but shows you the list of
	buffers in a new window.



	item texttt{C-x o}: Move to other window. If you hit texttt{C-x o}
	after showing the list of buffers then you can move over the name of
the buffers, when you hit Enter over a buffer name then that buffer
is opened in the current window.





item texttt{C-x 0}: Close the current window.
item texttt{C-x 1}: Close all other windows, and leave only the


current one.





	item texttt{C-x 2}: Make an horizontal cut to the current window to
	show a secondary window.



	item texttt{C-x 3}: Make a vertical cut and show a secondary
	window.





end{itemize}

section{Search mode}
One of functions that I use the most is the search function, in
texttt{emacs} we can do different types of searchs/replacemetns in a
buffer.

begin{itemize}
item texttt{C-s}: Searches textit{forward} as you type. Jumps to


the first instance after the cursor that matches what you
typed. Other instances in the buffer are highlighted. You can go
from one instance to the next one by hitting texttt{C-s}
again. When reaching the end of the buffer, then the search
wraps-around starting from the beginning of the buffer. If you press
texttt{C-g} you can quit the search and return where you were.





	item texttt{C-r}: Searches textit{backwards} as you type. Jumps to
	the first instance before the cursor that matches what you
typed. Other instances in the buffer are highlighted. You can go
from one instance to the previous one by hitting texttt{C-r}
again. When reaching the beginning of the buffer, then the search
wraps-around starting from the end of the buffer. If you press
texttt{C-g} you can quit the search and return where you were.



	item texttt{M-%}: Searches and replaces. You are asked to replace
	each term matching the search. If you hit texttt{!} then it acst as
replace all.



	item texttt{M-C-%}: Searches and replaces for regular
	expressions. You are asked to replace each term matching the
search. If you hit texttt{!} then it acst as replace all.



	item texttt{M-s o}: Searches for regular expression and shows the
	matches in an texttt{Occur} buffer, we can move into that buffer
and hit Enter over the match to go to the specific place of the
match.



	item texttt{M-x grep}: greps a pattern in the files you specify and
	shows the results in a texttt{grep} buffer. You can click or enter
in the results to jump to the file and line where is the
occurrance. The grep command uses this syntax: texttt{grep -nH -e


“string_to_search_for” folder}, where the texttt{-n} states to




show lines numbers, the texttt{H} is to show the file name and the
texttt{-e} is to indicate a pattern to search for. You can add
texttt{–colour} option to show colored output.



	item texttt{M-x rgrep}: Recursive texttt{grep} which searches in
	all the files and all the sub-directories in the given directory.





end{itemize}



            

          

      

      

    

  

    
      
          
            
  
Linux installation

This section presents instructions for the installation of SciCell++
on a linux type system. The instructions were tested on Ubuntu 18.04
but we (hopefully) expect them to work on recent versions as well.
Once finished this section you should continue with the
Starting SciCell++ on Linux document.


Overview


	Install Docker


	Install Git


	Get your own copy of SciCell++ from GitHub






Install Docker

Follow the instructions in the docker official installation website [https://docs.docker.com/engine/install/] to install Docker in your
system.



Install Git

Follow the instructions in the Git [https://git-scm.com/] official
webpage for your system.



Get your own copu of SciCell++ from GitHub


	Open a command line and type the following:

git clone https://github.com/tachidok/scicellxx
cd scicellxx
git checkout -b john_cool





The previous commands get a copy of SciCell++ from the official
GitHub repository [https://github.com/tachidok/scicellxx] down to
your local machine and moves into the scicellxx
folder. Finally, a new branch named john_cool is generated.


Note

Feel free to use your own name for the newly created folder.







From here on you can continue with the
Starting SciCell++ on Linux document.




Advanced installation

This type of installation gives you full customization of the software
and hardware resources in your machine.


Note

Currently only Unix based systems are considerd for this type of
installation. The steps provided in this section have been tested
in Ubuntu 16.04 LTS and Ubuntu 18.04 LTS.




Note

If you use Spack [https://spack.readthedocs.io/en/latest/] as
your software package manager we provide you with our spack
file. Feel free to use it to ease the
installation process and skip this section.




Overview

Software packages requirements


	Git [https://git-scm.com/] to get a copy of SciCell++ in your
system.


	A C++ compiler to build the SciCell++ and the demos. We tested
with gcc [https://gcc.gnu.org/] version 7.4.0.


	The CMake [https://cmake.org/] tool to configure and install
SciCell++. We tested with CMake version 3.10.2.


	The Python [https://www.python.org/] language to run some of the
demos and the unit test. We include Python based scripts to plot the
result for some demos . Tested with Python version 3.7.3.




You need to manually install the previous packages, we suggest to use
the docker based installation if you are not familiar with Unix based
systems.

The following software packages are optional (but recommended)


	Doxygen [https://www.doxygen.nl/index.html] to build
documentation and classes diagrams from source code for SciCell++.


	Latex [https://www.latex-project.org/] to generate math symbols
in documentation generated from source code.


	A software implementation of MPI to support parallel features
(openmpi/mpicc recommended - not currently supported-).




Steps

The following step guide you through the installation process:


	Get your own copy of SciCell++

Open a command line and type in the following:

git clone https://github.com/tachidok/scicellxx
cd scicellxx
git checkout -b john_cool





The previous commands get a copy of SciCell++ from the official
GitHub repository [https://github.com/tachidok/scicellxx] down to
your local machine and moves into the scicellxx
folder. Finally, a new branch named john_cool is generated.


Note

Feel free to rename the john_cool folder with your name.







That is it, now you can move to the configuration of SciCell++ section.


Add the bin folder of SciCell++ to your PATH variable

This would allow you to execute any scripts in the bin folder of
SciCell++ without specifying the full path of the scripts.


	Add the following line at the end of your .bashrc file from
your home folder.

export PATH="/path/to/your/scicellxx/installation/bin/:$PATH"












External packages installation

If you want to get the maximum performance for SciCell++ you will need
to install some or all of the following packages:


	Doxygen


	OpenBLAS


	SuperLU (requires OpenBLAS)


	Armadillo (it is recommended to previously install SuperLU)


	VTK (for visuallisation purposes, we use it with Paraview [https://www.paraview.org/])





Note

You do not need to install these packages for basic use of
SciCell++, install them only if you require additional features.




Note

If you used our provided spack file at
the installation step then you
already have these ones as well. You may skip this section.




Note

Please note that the provided instructions were tested in
the following distributions of Ubuntu:


	Ubuntu 16.04 LTS 64 bits


	Ubuntu 18.04.2 LTS 64 bits


	Ubuntu 18.04.5 LTS 64 bits






General requirements


	Before installing any of the external libraries in your system
ensure that none of them is already installed in your system, this
may produce crashes between versions.

You may remove the installed packages with the following command:

sudo apt-get remove --purge <package-name>





where <package-name> should be substituted by the name of the
package you want to remove.



	Install the following packages in your system.


Note

We provide the version of each package that we used for
the installation. You could check the available version
of a package for your system by typing:

apt-cache policy <package-name>





where <package-name> should be substituted by the name
of the package which you want to check its version.








Ubuntu 16.04 LTS 64 bits




	cmake (cmake 3.5.1-1ubuntu3)


	liblapack (liblapack-dev 3.6.0-2ubuntu2)


	libarpack (libarpack2, libarpack2-dev 3.3.0-1build2)







Install them by typing:

sudo apt-get install cmake liblapack-dev libarpack2 libarpack2-dev








Ubuntu 18.04.2 LTS 64 bits




	cmake 3.10.2


	liblapack (liblapack3 3.7.1-4ubuntu1, liblapack-dev
3.7.1-4ubuntu1)


	libarpack (libarpack2 3.5.0+real-2, libarpack2-dev
3.5.0+real-2)







Install them by typing:

sudo apt-get install cmake liblapack3 liblapack-dev libarpack2 libarpack2-dev












	Once installed follow the order below for installing the external
packages





Doxygen

Doxygen [https://www.doxygen.nl/index.html] is a documentation
generator from source code. The source code of SciCell++ is documented
following Doxygen directives, if you want to create documentation from
the source code then install Doxygen and graphviz.

Steps


	Open a terminal and type




sudo apt-get install doxygen
sudo apt-get install graphviz






Note

Tested versions with Ubuntu 18.04.2 LTS 64 bits:


	doxygen 1.8.13-10


	graphviz 2.40.1-2








OpenBLAS

OpenBLAS is an optimised version of the Basic Linear Algebra
Subprograms (BLAS). This section guides you through the installation
of OpenBLAS 0.2.20 on the following Ubuntu distributions:


	Ubuntu 16.04 LTS 64 bits


	Ubuntu 18.04.2 LTS 64 bits


	Ubuntu 18.04.5 LTS 64 bits





Note

Please refer to the OpenBLAS project original documentation [https://www.openblas.net/] in case you have problems with
the installation.



Requirements


	Double-check that no previous installation of OpenBLAS is part of
your system. If that is the case we recommend you to uninstall them
before continue.

Ubuntu 16.04 LTS 64 bits

Packages to install:


	libblas-dev (libblas-common, libblas-dev 3.6.0-2ubuntu2)




Open a terminal and type the following:

sudo apt-get install libblas-common libblas-dev





Ubuntu 18.04.2 LTS 64 bits

Packages to install:


	libblas-dev (libblas3 3.7.1-4ubuntu1, libblas-dev 3.7.1-4ubuntu1)




Open a terminal and type the following:

sudo apt-get install libblas3 libblas-dev









Steps


	Extract the compressed file in
scicellxx/external_src/openBLAS/OpenBLAS-0.2.20.tar.gz in a folder.






Warning

We recommend you to extract it out of the scicellxx
project folder to avoid adding the files to the git
repository. If you do extract it in the scicellxx
project folder then do not commit that folder within
the project.







	Open a terminal and go into the folder where you extracted the
files, then type

make






Note

You can try with make -j <number_of_processors> to
use more processors at compilation time.





	Once compilation is finished type the following to start the
installation process

mkdir installation
make PREFIX=./installation install






Note

If you prefer you can specify a different installation
foilder as follow:

make PREFIX=/path/to/your/installation install













SuperLU

SuperLU is a library for the direct solution of large, sparse,
nonsymmetric systems of linear equations. This section guides you
through the installation of SuperLU 5.2.0 on the following Ubuntu
distributions:


	Ubuntu 16.04 LTS 64 bits


	Ubuntu 18.04.2 LTS 64 bits





Note

Please refer to the SuperLU original documentation [https://portal.nersc.gov/project/sparse/superlu/] in case
you have problems with the installation.



Requirements


	Double-check that no previous installation of SuperLU is part of
your system. If that is the case we recommend you to uninstall them
before continue.


	You must have cmake installed in your system. Please refer to
that section to ensure
its installation.




Steps


	Extract the compressed file
/external_src/superLU/superlu_5.2.0.tar.gz in a folder.






Warning

We recommend you to extract it out of the scicellxx
project folder to avoid adding the files to the git
repository. If you do extract it in the scicellxx
project folder then do not commit that folder within
the project.




Note

If you are installing Armadillo with SuperLU support then
you need to install SuperLU with the flag -fPIC (which
stands for Position Independent Code), to do so open the
CMakeLists.txt file in the folder where you extracted
SuperLU, edit the line where CFLAGS are added (it
should be line 68 for the version we supply you. It
should look something like this.

set(CMAKE_C_FLAGS "-fPIC -DPRNTlevel=0 -DAdd_ ${CMAKE_C_FLAGS}")











	Open a terminal and go into the folder where you extracted the
files, then type

mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=../lib





the last line indicates where to save the installation, here we use
the lib folder of the SuperLU directory. If you have root
privileges then you may not need to specify a value for the
CMAKE_INSTALL_PREFIX variable.



	Once cmake finished its configuration type

make
make install






Note

You can try with make -j <number_of_processors> to
use more processors at compilation time.







Run tests


	Run the following command in the same folder where you extracted
SuperLU:

ctest





The results of the testing process can be found in the folowing
files:







	build/TESTING/s_test.out

	single precision real



	build/TESTING/d_test.out

	double precision real



	build/TESTING/c_test.out

	single precision complex



	build/TESTING/z_test.out

	double precision complex












Armadillo

Armadillo is a C++ library for linear algebra and scientific
computing. This section guides you through the installation of
Armadillo 8.300.3 on the following Ubuntu distributions:


	Ubuntu 16.04 LTS 64 bits


	Ubuntu 18.04.2 LTS 64 bits





Note

Please refer to the Armadillo original documentation [http://arma.sourceforge.net/] in case you have problems
with the installation.



Requirements


	Double-check that no previous installation of Armadillo is in your
system. If that is the case we recommend you to uninstall them
before continue.


	You must have cmake installed in your system. Please refer to that section to ensure its installation.


	This installation assumes you have SuperLU 5.2.0 already installed
in your system, if that is not the case then install SuperLU and return to this
point.





Note

According to Armadillo’s documentation, LAPACK and BLAS are
used to work with dense matrices, meanwhile ARPACK and
SuperLU are used to work with sparese matrices. If you want
to use SuperLU then you need to stick to version 5.2 (check
the README.txt file at line 146 of Armadillo
documentation). If you want to use OpenMP then make sure you
are using version 3.1 or newer (check the README.txt file at
line 372 of Armadillo documentation).



Steps


	Extract the compressed file /external_src/armadillo/armadillo-8.300.3.tar.xz in a folder






Warning

We recommend you to extract it out of the scicellxx
project folder to avoid adding the files to the git
repository. If you do extract it in the scicellxx
project folder then do not commit that folder within
the project.







	Open a terminal and go into the folder where you extracted the
files, then type

mkdir installation
cmake . \
-DCMAKE_INSTALL_PREFIX=lib \
-DSuperLU_INCLUDE_DIR=path_to_SuperLU_include_directory \
-DSuperLU_LIBRARY=path_to_SuperLU_library \
-Dopenblas_LIBRARY=path_to_openBLAS_library






Note

Observe that you need to substitute with the paths on your particular machine. If you just followed the instructions on the previous sections then you may use the following configuration:

mkdir installation
cmake . \
-DCMAKE_INSTALL_PREFIX=installation \
-DSuperLU_INCLUDE_DIR=../SuperLU_5.2.0/installation/include \
-DSuperLU_LIBRARY=../SuperLU_5.2.0/installation/lib/libsuperlu.a \
-Dopenblas_LIBRARY=../OpenBLAS-0.2.20/installation/lib/libopenblas.a








Note

If you use cmake-gui then you can configure the above
variables there as well.





	Once cmake finished its configuration type

make
make install






Note

You can try with make -j <number_of_processors> to
use more processors at compilation time.




Note

In previous versions we required to indicate the
installation directory at the make command , if you
need to do it here is how, otherwise, just ignore these
lines

make install DESTDIR=my_installation_directory









	Add the library path to the environment variable LD_LIBRARY_PATH. To do so open a terminal and type





LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/armadillo/installation/lib/folder






Note

If you want to add this path “permanently” to your user
add these lines to your ~/.profile file:

export LD_LIBRARY_PATH=/path/to/armadillo/installation/lib/folder





and relogin.




Note

Observe that you need to specify the path for your current
machine. Here are the values I use for my personal
computer:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/tachidok/local/working/my_stuff/armadillo-8.300.3/installation/lib/





The following is the line I added to my ~/.profile
file

export LD_LIBRARY_PATH=/home/tachidok/local/working/my_stuff/armadillo-8.300.3/installation/lib/











	You can verify that the path is on your LD_LIBRARY_PATH
environment variable by typing:

echo $LD_LIBRARY_PATH









Run tests


	Open a termianl and go to folder where you extracted Armadillo,
then open the Makefile in the examples folder.


	Add the following lines (substitute them with the correct paths in
your computer):

INCLUDE=-I /path/to/armadillo/include/folder
LIBS=-L /path/to/armadillo/lib/folder







	In the same file add the $(INCLUDE) and $(LIBS) directives
in the line:

CXXFLAGS = $(DEBUG) $(FINAL) $(OPT) $(EXTRA_OPT) $(INCLUDE) $(LIBS)







	Save and close the file.


	Compile example1 by typing

make example1






Note

If you got errors related with the pthread library then add the following in the Makefile

LIB_FLAGS = -larmadillo -lpthread












You should have an executable file called example1.





	Run the example as follows:

./example1






Note

If you have problems related to no shared library found
then make sure you added the correct path for the
armadillo libraries (/.so/) in the environment variable
LD_LIBRARY_PATH.







Further steps

If you require an specific configuration for Armadillo as OpenMP
support, acceleration, disabling of BLAS, LAPACK or something else
please do check the official documentation for additional features [http://arma.sourceforge.net/docs.html#example_prog].



VTK

VTK [https://vtk.org/] is an open source Visualization Toolkit to
display scientific data in 2D and 3D. We use Paraview [https://www.paraview.org/] , an open source visualization
application which makes use of VTK to display the plots. This section
guides you through the installation of VTK-8.1.1 on the following
Ubuntu distributions:


	Ubuntu 16.04 LTS 64 bits


	Ubuntu 18.04.2 LTS 64 bits




Steps


	Extract the compressed file /external_src/vtk/VTK-8.1.1.tar.gz
in a folder.






Warning

We recommend you to extract it out of the scicellxx
project folder to avoid adding the files to the git
repository. If you do extract it in the scicellxx
project folder then do not commit that folder within
the project.







	Open a terminal and go to the folder where you extracted the compressed file, inside the VTK folder create a new one and execute the cmake-gui as follow:





mkdir VTK-bin
cd VTK-bin
cmake-gui ../../VTK-8.1.1 -DCMAKE_INSTALL_PREFIX=./installation





the installation will be performed in the installation directory
of the VTK-bin folder. If you have root privileges then you may
not need to specify a value for the CMAKE_INSTALL_PREFIX
variable.





	In the cmake gui click on the configure button, once finished
click on the generate button.


Note

Make sure that the source code and build binary directories are correctly set.


	Source ./VTK-8.1.1


	Bin ./VTK-8.1.1/VTK-bin







Note

If you want to enable MPI then you need to set it in the
variable VTK_Group_MPI.




Note

Verify that the building type you want has been set
correctly; debug or release.





	After the configuration has finished close the cmake gui and in a
terminal type

make






Note

You can try with make -j <number_of_processors> to
use more processors at compilation time.





	Install VTK

make install





this will install VTK into the folder specified by the build option
DCMAKE_INSTALL_PREFIX.





Further steps


	Learning VTK by examples: check this guide [https://www.vtk.org/vtk-users-guide/], specially chapters 1, 2, 3, 11 and 12.









            

          

      

      

    

  

    
      
          
            
  
Windows installation

This section provides instructions for the installation of SciCell++
on a Windows system. We tested these instructions on Windows 10 but we
(hopefully) expect them to work on recent versions too. Once finished
this section you should continue with the
Starting SciCell++ on Windows document.


Overview


	Enable virtualisation on Windows


	Install Docker Desktop


	Install GitHub Desktop


	Troubleshooting






Enable virtualisation on Windows

The following instructions are based on this YouTube video [https://youtu.be/6cVBG9BHibo] and the official webpage [https://docs.microsoft.com/en-us/windows/wsl/install-win10] for
WSL2 installation for Windows 10.


	Look for bios on the windows search tool and select the
Change advanced startup options option.

[image: ../../_images/01.png]


	On the Advanced startup section click on the Restart now button.

[image: ../../_images/02.png]


	Click on Troubleshoot, then on Advanced options, followed
by UEFI Firmware Settings and finally click on the Restart
button.


	Once your computer has launched you may see a screen similar to the
one below (the specific screen depends on your vendor’s
machine). Look for an Advanced Menu and make sure that
Virtualization Technologies are enabled. Save your changes
and restart your computer. You may have a similar option if you are
using a different processor brand.

[image: ../../_images/03.jpg]


	Once your computer has restarted look for powershell on the
search bar, right-click on the Windows PowerShell option and
select Run as administrator.

[image: ../../_images/04.png]


	On the command line type (or copy-paste) the following and wait for completion.

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart







	Check your Windows version by typing the winver command in the
Run dialog, press Windows Key+R to open the Run dialog.

[image: ../../_images/05.png]


	In the About Windows dialog check you fullfill the following
requirements (as indicated in Step 2 on this webpage [https://docs.microsoft.com/en-us/windows/wsl/install-win10]):


	For x64 systems: Version 1903 or higher, with Build 18362 or higher.


	For ARM64 systems: Version 2004 or higher, with Build 19041 or higher.






	Once again open a Windows PowerShell with administrative
rights, type (or copy-paste) the following and wait for completion.

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart







	Download and install the WSL2 Linux kernel update package for
x64 machines as indicated on Step 4 on this page [https://docs.microsoft.com/en-us/windows/wsl/install-win10]





[image: ../../_images/07.png]




	Once more open a Windows PowerShell with administrative
rights, type (or copy-paste) the following and wait for
completion.





wsl --set-default-version 2









	Install a Linux distribution as indicated on Step 6 on this page [https://docs.microsoft.com/en-us/windows/wsl/install-win10]. We
recommend to install the latest Ubuntu available distribution
(20.04 LTS or 18.04 LTS). Do not forget to launch and set a
password for your newly installed linux distribution.

[image: ../../_images/08.png]






Install Docker Desktop


	Download Docker Desktop [https://www.docker.com/products/docker-desktop] for windows (at
the writing of this document lastest version was 3.5.2).


	Install Docker Desktop with the default options.

[image: ../../_images/011.png]


	Once the installation process finish you need to restart your
computer. Click on the Close and restart button.


	(Optional) Open docker, go to Settings>General and make sure
the Use the WSL2 based engine check box is ticked.






Install GitHub Desktop


	Download GitHub Desktop [https://desktop.github.com/] (you will
need lo sign up on GitHub [https://github.com/]).


	Install GitHub Desktop and select the Sign in to GitHub.com
option.


	In the browser use your GitHub credentials to login. If prompted,
select the open on GitHub desktop option.


	On the Configure Git dialog select the Use my GitHub account
name and email address option and click on Finish.


	Select the Clone a repository from the Internet... option.


	Look for the scicellxx repository and select it. Use the
default location to clone the repository or choose one in your
local drive (make sure to remember this location since you will
need it to use SciCell++).


	Click on the Clone button and wait for completion.


	Create a new branch on the Github Desktop application. Go to the
menu Branch and select New branch.... This will open a
dialog where you specify the new branch name, use your name in
lowercase as the branch name. For example john_cool.

[image: ../../_images/012.png]

Note

Whenever you start to work with SciCell++ you should ensure
that you are working on your own branch. In case you are on a
different branch you can switch to your branch (or any other)
by selecting it on the popup menu (current branch).




Note

Any commits to SciCell++ must be done to your own branch, so
make sure the Commit to .. button spells your branch
name.









Troubleshooting


My Windows version is lower than the recommended one to install WLS



Note

Remember that you require Windows 10 or a higher version.






You may update your system to the required version (or even higher)
with help of the Windows Update settings tool.


[image: ../../_images/06.png]



Within that tool check whether you have pending updates or previous
not installed updates, to do so, click on the Install now button
or on the Check for updates button, respectively.


[image: ../../_images/09.png]
[image: ../../_images/10.png]








            

          

      

      

    

  

    
      
          
            
  
Starting SciCell++ on Linux


Overview


	Run Docker container with SciCell++


	Troubleshooting






Run Docker container with SciCell++


	Open a terminal and go to the folder where you ran the git clone
command, then type the following:

sudo ./scicellxx/tools/run_scicellxx_on_docker.sh










If you spot no errors then follow the instructions on section
Configuration.






Troubleshooting


I am getting an error when executing the script run_scicellxx_on_docker.sh

If you get an error when executing the run_scicellxx_on_docker.sh
script stating that the name /scicellxx is already in use by
another container then you need to DELETE that container prior to
start another one with the same name.



	Open a terminal and type the folowing:

sudo ./scicellxx/tools/stop_scicellxx_on_docker.sh

















            

          

      

      

    

  

    
      
          
            
  
Starting SciCell++ on Windows


Overview


	Run Docker container with SciCell++


	Troubleshooting






Run Docker container with SciCell++


	Run the Docker Desktop application. If you installed it with the
default options then it should be already running on the
backgroud. Open the interface by double clicking the docker icon at
the botton-right menu of your task bar and check no errors are
reported.


	Open a Windows PowerShell (there is no need to do so with
administrative rights) and type the following.

docker run --name=scicellxx -v C:\Users\tachi\Documents\GitHub\scicellxx:/home/scicellxx -w /home/scicellxx/ -it scicellxx/scicellxx-base-all:0.1






Warning

Make sure to change
C:\Users\tachi\Documents\GitHub\scicellxx by the path where
you cloned the SciCell++ repository in your local machine.



You should have a similar output as that shown in the image. Wait
for completion.

[image: ../../_images/013.png]


	Once finished, you should have a prompt as that shown in the
image. That means SciCell++ is ready to run.

[image: ../../_images/021.png]
You could also check the docker interface that should show a
running image with the name scicellxx as shown below:

[image: ../../_images/03.png]




From here on you can continue with the configuration step at the initial steps
document.



Troubleshooting


I am getting an error when running the docker run command

If you get an error when running the docker run command stating
that the name /scicellxx is already in use by another container
then you need to DELETE that container in your docker interface.



	Open the docker interface and in the Containers/Apps section
find the scicellxx container and click on the Trash can
icon to delete it.

[image: ../../_images/014.png]












            

          

      

      

    

  

    
      
          
            
  
Modules in SciCell++

In this section you will find the list of current modules in
SciCell++, their details and how to include them in the
CMakeLists.txt files.


General module:

Problem module:

Linear algebra module:

Matrices module:

ODEs module:

Interpolation module:







            

          

      

      

    

  

    
      
          
            
  
Generate doxygen documentation for SciCell++

This allows you to create class diagrams and browseable documentation
directly from the source code of SciCell++.

You need to install Doxygen [https://www.doxygen.nl/index.html] and
Latex [https://www.latex-project.org/] to generate documentation
from source code.

You may check this section for doxygen
installation.


Workflow


	Open a command line and go to the main folder of the project.


	In the command line type the following:

./tools/user/make_doc.sh





Voila! The documentation will be automatically generated into the
./doxy_doc/html folder.



	Open the file ./doxy_doc/html/index.html within your favorite
web-browser to browse the documentation.








            

          

      

      

    

  

    
      
          
            
  
Compiling and running demos

SciCell++ is released with a set of demos that show you some of its
main features. We recommend you to explore the demos section of the
documentation and the demos folder to find a demo that be of your
interest. Here we show you how to run a basic demo, however, these
workflow should work for most of the SciCell++ demos. Carefully review
the documentation associated for the specific demo you are interested
for any additional requirements.


Note

Whenever you want to run a demo you need to create a
RESLT folder, this is where the demo output will be
located. If the folder does not existe when you run the demo
then no output will be generated. If the folder does exists
then delete or move its content prior to running the demo to
avoid overwritting.




Workflow

Suppose you want to run the Lotka-Volterra demo in the folder
/demos/odes/lotka_volterra/.


Compiling



Running

You need to move into that folder, do
it as follow:


cd demos/odes/lotka_volterra








once in the folder create the RESLT folder to store the output of
the demo.


mkdir RESLT








Run the demo by typping its name after the ./bin/ string as follow:


./bin/demo_lotka_volterra








You should see output messages on the terminal with general
information about the results of the computations. Once finished check
the results in the RESLT folder.


Note

Some demos are equipped with Python or GNUPlot
script to visualise the results. Try to run them as python
<name-of-the-python-script.py> or gnuplot
<name-of-the-gnu-script.gp>.






Input arguments

Some demos require input arguments to run, if you try to run one of
those and pass nothing you will get a message with the list of
arguments that you need to pass. You can also check what input
arguments a demo needs by passing the --help or -h options
when executing the demo. Example:


./bin/demo_lotka_volterra --help












            

          

      

      

    

  

    
      
          
            
  
Create your private folder

Every SciCell++ user has its own private folder. You should use this
folder to store all of your work, this should include in-development
demos, and any non-released features you are developing for
SciCell++.


Note

This workflow should be executed only once by every new
SciCell++ user. However, if you are collaborating with other
SciCell++ users or you require an additional private folder
then you may need to execute this workflow again.




Folder structure

Prior to create your own private folder we encourage you to explore
the folder structure of SciCell++. In this section we briefly mention
what each folder is about:


	build, this folder is automatically generated when compiling
SciCell++, all compilation files are stored inhere. You do not need
to deal with the files within this folder, just leave them alone.


	configs, store configuration files where each file corresponds
to an specialised configuration of the framework. For example, you
can indicate to use Armadillo, VTK, double precision
arithmetic, panic mode, etc. Have a look at the options for
configuration files. The
current configuraton is stored in the current file. If you want
to use an specialised configuration of the framework you should copy
the configuration into the current file or choose it as the
configuration file when running the autogen.sh script (use the
-c option followed by the configuration filename). Try any other
of the configurations in this folder to reduce the compilation time
or to improve the performance of SciCell++.


	demos, stores a large set of demos that you may want to use as
templates or starting points for your project. These demos provide a
good insight on the features available in SciCell++. This folder
also helps for testing the framework and reporting any issues found
when new features are implemented. Whenever you want to update your
contributions to the SciCell++ repository make sure all of the demos
compile, run and pass the tests. Check the corresponding
demos documentation for details.


	docs, the source files for this documentation. If you add a demo
to SciCell++ you will be requested to write the documentation to
your demo within this folder.


	external_src, this folder stores any external software packages
used within the framework to provide extra features. You should not
modify this folder unless you are providing new functionalities that
depend on external software packages. If you are using a container
to run SciCell++ then most of the software within this folder is not
used.


	private, stores private files for each user or
collaborator. Each one should have its own private folder here, this
should be used as the development folder for each one. We encorage
you to fully document your projects so that it can later be included
in the demos folder to shown any specialised features of the
framework that you contributed with.


	src, this is SciCell++’s soul, here lives all the source
code. Prior to including files in this folder you should test them
in your private folder. Any addition into this folders requires
the aprovement of the main developers team since you would be mainly
extending SciCell++’s capabilities.


	tools, a set of tools used for the library, stores scripts used
by the framework at compilation time or to generate clean
distributions of the framework.




Once you have a glance of what each folder is about on SciCell++
organization lets create your own private folder.



Workflow


	Open a terminal and on the main folder of SciCell++ execute the
following script:

./tools/user/make_new_user





The script will prompt you for a user name, this should not include
whitespaces or any special character.



	Run the autogen.sh script at the main folder of SciCell++ and
check for any errors.








            

          

      

      

    

  

    
      
          
            
  
Creating your own project

The easiest way to start a new project is to use a simple demo as a
template. This workflow creates a new project into your private folder
and copies the required files to start your project.


	Open a terminal and on the main SciCell++ folder execute the
following script:

./tools/user/make_new_project.sh





You will be prompted for your user name and your new project
name. Make sure not using white spaces or special characters.


Important

Take note of the script summary creation since you
will need those information to build and execute
your project.








Building and executing your project

Open a terminal and follow these instructions.


Building your project


	Go to the build folder in the main SciCell++ folder and type:

make julio_test





Make sure to substitute julio_test by the reported
building/executable project name by the new project creation
script. It should be a combination of your user name + your
project name.

The building output should be displayed at your screen. Once no
errors have been reported proceed to the following step to execute
your project.







Executing your project


	Go to your project folder into your private folder and
type:

./bin/julio_test





Make sure to substitute julio_test by the reported
building/executable project name by the new project creation
script. It should be a combination of your user name + your
project name. Use TAB for autocomplete.



	Your project’s output should be displayed on your screen.





Important

As you noticed, the generation and execution of your
project is performed in two different folders:


	the build folder (building)


	your private/project_name folder (execution)




We use this two-folders strategy to avoid cluttering
the folder structure of SciCell++ with files
automatically generated by CMake. By following this
strategy we keep a clean folder structure for SciCell++
and group all files generated by CMake in the build
folder. This help us to keep track for changes easily
since we can exclude the whole build folder from
the git repository.

Just keep in mind the following:


	Whenever you want to build your project you need to
do so in the build folder, inthere just type
make followed by the name of your project.


	Whenever you want to execute your project go to your
private/project_name folder and type
./bin/the-name-of-your-project.











            

          

      

      

    

  

    
      
          
            
  
Daily workflow


External editor to modify files

We recommend you to use an external editor such as SublimeText [https://www.sublimetext.com/]. If you are on Windows you can open
the repository from the Repository menu in GitHub Desktop.


[image: ../../_images/015.png]







            

          

      

      

    

  

    
      
          
            
  
Add your project to the demos folder

If you add a new feature to SciCell++ we encourage you to
create_a_tutorial and a demo showing these new features. Here
we detail the process to include your project as part of the demos of
SciCell++. We divide this process in two parts, the first one guides
you to create your folder and your validation files, the second part
shows you how to configure the SciCell++ to build and execute your
demo. In both sections we suppose that your demo is called
demo_sophy.

Create your demo and validation folder for your demo

The initial steps to include your demo as part of SciCell++ involve
create a folder in the SciCell++ demos folder structure and to
generate the validation files.


	Execute your project and save its output into a file. We encorage
you to execute it using single and double precision so that we have
two different outputs. The files that you generate should be named:


	validate_demo_sophy.dat for the single precision generated
output.


	validate_double_demo_sophy.dat for the double precision
generated output.






	Create a new folder into the demos folder structure. Use a name
that captures the intent of your project.

mkdir <your-folder-name>







	Add the following line at the end of the CMakeLists.txt file
that lives at the same level of the folder that you created:

ADD_SUBDIRECTORY(your-folder-name)







	Step into your demo folder and create a folder called
validate.


	Copy the two output files (or copy all of them if you have more
than two) generated at step 1 into the validate folder.




Configure SciCell++ to build and execute your demo

Once you have created your folder and copied the validation files
there you are ready to configure SciCell++ to build and execute your
demo.


	Copy the source code for your project into your demo folder, in
this case we suppose that the source code for your project is
the file demo_sophy.cpp.


	Copy the CMakeLists.txt.demo_template from the /tools/
folder into your demo folder. Rename this file as
CMakeLists.txt.


	Change the content of the CMakeLists.txt file as follow:


	Change all the instances of the tag SRC_demo_john for your
own tag to identify your source code. For example:
SRC_demo_sophy.


	Change all the instances of demo_john.cpp for the name of
your source code file. For example: demo_sophy.cpp.


	Change all the instances of demo_john, this will be the name
of your executable and the name you need to type at the terminal
to compile your project. For example:demo_sophy.


	Change all the instances of the tag LIB_demo_john for your
own tag to identify libraries required for your code. For
example: LIB_demo_sophy.


	Include the modules you need. In the template we only include the
general_lib and the problem_lib modules. Check the
modules document for the full list of module and their
details.






	In the same file perform the following changes in the Test
section.


	Change all the instances of TEST_demo_john_run by the name of
your demo. For example: TEST_demo_sophy_run.


Important

Make sure to keep the TEST and _run prefix
and postfix, respectively.





	Change all the instances of demo_john with the name of your
demo. For example: demo_sophy.


	Change all the instances of VALIDATE_FILENAME_demo_john with
the name of your tag for the validation file. For example:
VALIDATE_FILENAME_demo_sophy.


	Change the name of the validation file
validate_double_demo_john.dat by yours. Recall that this file
should store the output of your project executed using double
precision. For example: validate_double_demo_sophy.dat.


	Change the name of the validation file validate_demo_john.dat
by yours. Recall that this file should store the output of your
project executed using single double precision. For example:
validate_demo_sophy.dat.


	Change all instances of TEST_demo_john_check_output with the
name of your demo. For example: TEST_demo_sophy_check_output.





Important

Make sure to keep the TEST and _output
prefix and postfix, respectively.





	Make sure that the computations of your demo are stored in an
output file. If the file that you generate is called differently
than output_test.dat then modify any instance of that name in
the CMakeLists.txt file.


	Go to the root folder of SciCell++ and execute the ./autogen.sh
script and enable the execution of the demos. If you find errors
please make sure you correctly changed all the tags indicated in
the previous steps. Your project should be automatically built,
executed and validated.







            

          

      

      

    

  

    
      
          
            
  
Generate a .tar.gz file to distribute SciCell++

The easiest way to distributed SciCell++ is by means of the official
GitHub repository, however, if you need to move your current copy of
SciCell++ to a computer with no Internet access (ex. an isolated
cluster of computers or a SuperComputer) this is an easy way to do
so. Follow the steps in this section to create a .tar.gz package
file with your current version of SciCell++.


Workflow


	Save all of your work, including source files, images and
documentation.


	Make sure that your current version has neither errors nor broken
demos. Verify this by running the ./autogen.sh script at the
main folder of SciCell++.


	At the main folder of SciCell++ type the following:

./tools/user/make_clean_distro.sh





This script will perform a set of instructions to generate a
.tar.gz file package. You will be prompted to whether remove or
not all files with extensions .dat, .png, .jpeg, .jpg, .tar.gz,
.fig, .bin, .rar, .vtu, .ubx, .gp, .m (only those in the
demos and private folders will be ignored for
deletion). The process of creating a compressed file will start.



	Once finished a file named SciCell++.tar.gz will be created at
the main folder of SciCell++.








            

          

      

      

    

  _images/011.png
© installing Docker Desktop 3.5.2 (66501)

Configuration

Install required Windows components for WSL 2
Add shortcut to desktop






_images/012.png
Create a branch

Name

(john_cool

Your new branch will be based on your currently checked out
branch (master ). master is the default branch for your
repository.






_images/01.png
oD @

Best match

R Change advanced startup options
System settings

Search the web

L bios - See web results >

bioss login >
biostar >
biosfera >
bios hp >
bios ps2 >

bios pesx2 >

Y o o v v v

biossmann >





_images/015.png
) File Edit View [ESSSINSYE Branch  Help

[ Current n Push ~ Fetch origin
= scicelbxx

Changes H

0 changed file

al changes

mand Prompt ymmitted changes in this repository. Here are some friendly suggestions for

pen in Sublime Text  Ctrl+Shift+A

Request from your current branch
anch (julio) is already published to GitHub. Create a pull

reate Pull Request
spose and collaborate on your changes.

or Ctrl R

n GitH:

Open the repository in your external editor
Select your editor in Options Open in Sublime Text

Repository menu or Ctrl Shift A

’ Summary (required) View the files of your repository in Explorer

Show in Expl
Repository menu or Ctrl Shift ow in Explorer

Description

Open the repository page on GitHub in your browser

Vi GitHub
Repository menu or Ctrl Shift G iew on GitHul






_images/02.png
Settings

@ Recovery
Reset this PC

If your PC isn't running well, resetting it might help. This lets you
choose to keep your personal files or remove them, and then
reinstalls Windows.

Get started

Advanced startup

Start up from a device or disc (such as a USB drive or DVD), change
your PC's firmware settings, change Windows startup settings, or
restore Windows from a system image. This will restart your PC.

Restart now






_images/013.png
Windows Powershell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform Powershell https://aka.ms/pscoreé

PS C:\Users\tachi> docker run --nam

@.1: Pulling from scicellxx/scicellxx-base-all

3cf8fb62basf: Download complete
e80c964ece6a: Download complete

dag3732dds3a: Downloading [
cofdcd3faq97: Download complete
51dc@5260b10: Downloading [>
c5baseo60cdo: Waiting

6becob14dfs51: Waiting

scicellxx -v

1
1

C:\Users\tachi\Documents\GitHub\scicellxx:/home/scicellxx -w /home/scicellxx/ -it scicellxx/scicellxx-base-all:@.1
Unable to find image 'scicellxx/scicellxx-base-all:e.1' locally

9.626MB/82.77MB

1.074MB/2.102GB





_images/014.png
Containers / Apps
Images

Volumes

Dev Environments (IED

O\ Search...

@ scicellxx scicellxx/scicellx...

®





_images/021.png
Windows Powershell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform Powershell https://aka.ms/pscoreé

PS C:\Users\tachi>

f22cccobs772: pull
3cf8fb62basf: Pull

e80c964ece6a: Pull
d483732dds3a: Pull
cofdcd3faa97: pull
51dces26eb1e: Pull

csbaseesocde: Pull
6becob14dfs1: pull

Digest: sha256:60aef18f7d6ceaf1780c0a79dbel1fc2b16304fece67f4e41a8193dod6e7b5148
newer image for scicellxx/scicellxx-base-all:e.1
root@3deeo8fe71e4: /home/scicellxx# .

Status: Downloaded

docker run --nam
Unable to find image 'scicellxx/scicellxx-base-all:e.1' locally
@.1: Pulling from scicellxx/scicellxx-base-all

complete
complete
complete
complete
complete
complete
complete
complete

scicellxx -v C:\Users\tachi\Documents\GitHub\scicellxx:/home/scicellxx -w /home/scicellxx/ -it scicellxx/scicellxx-base-all:@.1





_images/03.jpg
NN

Main  Advanced Boot  Security Save\& Exit k

abled

Internal Pointing Device

Wake On Lid Open
valnch
i
»ASUS EZ Flash 3 Utility
>SMART Settings
>Network Stack Configuration
>USB Configuration
>Graphics Configuration
»SATA Configuration

When enabled, a VMM can utilize the additional hardware capabilities provided by
Vanderpool Technology.

i

Hot Keys

=]~
]
BB

Select Screen
Select Item

Select

Change Option

General Help

Ez Mode/Advanced Mode
Optimized Defaults
Save

Exit





_images/03.png
Containers / Apps
Images

Volumes

Dev Environments (YY)

O\ Search...

@ scicellxx scicellxx/scicellx...
RUNNING

Sort by v

OXOXOXO,





nav.xhtml

    
      Table of Contents


      
        		
          SciCell++
        


        		
          Initial steps
          
            		
              Installation
            


            		
              Starting SciCell++
            


            		
              Configuration
              
                		
                  Additional options for autogen.sh
                


                		
                  Options for the configuration file
                


              


            


          


        


        		
          Workflows
          
            		
              Beginner workflows
            


            		
              Intermediate workflows
            


            		
              Advanced workflows
            


            		
              Expert workflows
            


          


        


        		
          Demos
          
            		
              Examples and test cases
            


            		
              Current demos for specific functionalities
            


          


        


        		
          Tutorials
          
            		
              General
              
                		
                  Create a tutorial
                


                		
                  A quick starting-up guide
                


              


            


            		
              Maths
              
                		
                  Differential Equations
                


              


            


            		
              Cellular Automata
            


          


        


        		
          Contributions
          
            		
              How to contribute?
            


            		
              Facts and curiosities
              
                		
                  List of contributors
                


              


            


          


        


        		
          License
        


        		
          Help
        


      


    
  

_images/06.png
oD @

Best match

/7N Windows Update settings
~ System settings

Settings
Check for updates
View your Update history

Advanced Windows Update options

Change active hours

Search the web
£ windows upda - See web results
windows update
windows update assistant
windows update 10

windows update catalog

windows updal





_images/07.png
(5 Windows Subsystem for Linux Update Setup

2

Welcome to the Windows Subsystem for Linux
Update Setup Wizard

The Setup Wizard will install Windows Subsystem for Linux
Update on your computer. Click Next to continue or Cancel to
exit the Setup Wizard.






_images/04.png
oD @

Best match

E Windows PowerShell

App
Run as administrator
Apps
Open file location
B Windows Pow, )
Pin to Start

o .
B Windows Pow Pin to taskbar

B Windows Pow

B % ¢ 8 d

Uninstall

Settings

=1 Replace Command Prompt with
Windows PowerShell when using Windows

Search the web
L0 powershell - See web results
A powershell 7

A powershell download

A powershell





_images/05.png
‘< Run

/=5 Type the name of a program, folder, document, or
Internet resource, and Windows will open it for you.






_images/10.png
Settings

]

Home

Update & Security

© Y

B2 (Q)

i}

Windows Update

Windows Security

Backup

Troubleshoot

Recovery

Activation

Find my device

For developers

Ty P W

Windows Update

~ | You're not up to date
Last checked: 7/28/2021, 1:40 AM

Check for updates

Change active hours
View update history

Advanced options

Looking for info on the latest updates?

Learn more

Related links
Check Storage

IR






_images/08.png
Microsoft Store - (m] X

&  Home Gaming Entertainment Productivity —Deals P search & L6

O oo T -

Ubuntu

Canonical Group Limited ¢ Developer tools > Utilities

*kk k¥ 34 12 Share

Ubuntu on Windows allows you to use Ubuntu Terminal and run
Ubuntu command line utilities including bash, ssh, git, apt and
many more.

More

ﬁ EVERYONE

Overview System Requirements Reviews Related






_images/09.png
Settings

o]

Home

Update & Security

~
[ 97

© Y

=l ©)

i}

Windows Update

Windows Security

Backup

Troubleshoot

Recovery

Activation

Find my device

For developers

Windows Update

Restarting your computer may help, and we'll keep trying to update.
Retry

Intel Corporation - Display - 8/15/2018 12:00:00 AM - 24.20.100.6286
Status: Pending install

Microsoft - HIDClass - 10/27/2015 12:00:00 AM - 9.9.108.0
Status: Pending install

Realtek Semiconductor Corp. - Extension - 2/23/2018 12:00:00 AM - 2023.73.101.2018
Status: Pending install

Microsoft - HIDClass - 5/14/2018 12:00:00 AM - 3.3.207.0
Status: Pending install

We'll automatically install updates when you aren't using your device, or you can install
them now if you want.

Install now

Change active hours

View update history

Advanced options






_static/file.png





_static/minus.png





_static/plus.png





